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Chapter 1

Complex Numbers

1.1 Sums and Products

The complex numbers can be defined as ordered pairs of real numbers (x, y) subject to
specific operations of addition and multiplication. We identify the set of complex numbers
C with the xy-plane (the complex plane).

Definition 1.1.1 (Complex Number). A complex number z is defined as an ordered pair
of real numbers:

z = (x, y)

where x is the real part of z, denoted Re(z), and y is the imaginary part of z, denoted
Im(z).

Two complex numbers z1 = (x1, y1) and z2 = (x2, y2) are equal if and only if their
real parts are equal and their imaginary parts are equal.

Definition 1.1.2 (Algebraic Operations). Let z1 = (x1, y1) and z2 = (x2, y2). We define
sum and product as:

z1 + z2 = (x1 + x2, y1 + y2)

z1z2 = (x1x2 − y1y2, y1x2 + x1y2)

Remark 1.1.1. The set of complex numbers contains the set of real numbers as a subset.
We identify the real number x with the pair (x, 0). Under this identification, operations
correspond to standard real arithmetic.

1.1.1 The Imaginary Unit

It is customary to denote the number (0, 1) by i. Using the definition of multiplication:

i2 = (0, 1)(0, 1) = (0 · 0− 1 · 1, 1 · 0 + 0 · 1) = (−1, 0) = −1

Thus, we can write any complex number z = (x, y) as:

z = x+ iy

5



6 CHAPTER 1. COMPLEX NUMBERS

Figure 1.1: Vector representation of a complex number z = x + iy. The point (x, y)
corresponds to the complex number in the plane.

1.2 Basic Algebraic Properties

The set C forms a field under addition and multiplication.

Theorem 1.2.1 (Field Properties). For any z1, z2, z3 ∈ C, the following laws hold:

1. Commutative laws: z1 + z2 = z2 + z1 and z1z2 = z2z1.

2. Associative laws: (z1 + z2) + z3 = z1 + (z2 + z3) and (z1z2)z3 = z1(z2z3).

3. Distributive law: z(z1 + z2) = zz1 + zz2.

4. Identities: Additive identity is 0 = (0, 0). Multiplicative identity is 1 = (1, 0).

5. Inverses: For every z, there is an additive inverse −z. For every z ̸= 0, there is
a multiplicative inverse z−1.

Example 1.2.1. Find the multiplicative inverse of z = x+ iy assuming z ̸= 0. We seek
u+ iv such that (x+ iy)(u+ iv) = 1. Solving the system of linear equations yields:

z−1 =

(
x

x2 + y2
,

−y

x2 + y2

)

1.3 Vectors and Moduli

A complex number z = x+ iy is naturally associated with a position vector in the plane
starting from the origin and terminating at (x, y).
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Definition 1.3.1 (Modulus). The modulus (or absolute value) of z = x + iy is the
non-negative real number:

|z| =
√
x2 + y2

Geometrically, this represents the distance of the point z from the origin.

Lemma 1.3.1 (Distance between points). The distance between two complex numbers z1
and z2 is given by |z1 − z2|.
Exercise 1.3.1. Prove that |z|2 = (Re(z))2 + (Im(z))2.

1.4 The Triangle Inequality

One of the most crucial inequalities in analysis is the Triangle Inequality, which states
that the length of a side of a triangle is less than or equal to the sum of the lengths of
the other two sides.

Theorem 1.4.1 (Triangle Inequality). For any z1, z2 ∈ C:

|z1 + z2| ≤ |z1|+ |z2|

Figure 1.2: Geometric representation of the Triangle Inequality for complex numbers z1
and z2. The length of the vector z1 + z2 is less than or equal to the sum of the lengths of
z1 and z2.

Corollary 1.4.2. It follows from the theorem that:

|z1 + z2| ≥ ||z1| − |z2||
See Figure 1.2 for a geometric illustration.
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Figure 1.3: Geometric representation of the complex conjugate. The point z = x+ iy is
reflected across the real axis to obtain z̄ = x− iy; the dashed line indicates the reflection.
Analogously, −z is the reflection across the origin, and −z̄ is the reflection across the
imaginary axis.

1.5 Complex Conjugates

Definition 1.5.1 (Conjugate). The complex conjugate of a number z = x+ iy is defined
as:

z̄ = x− iy

Geometrically, z̄ is the reflection of the point z across the real axis.

Theorem 1.5.1 (Properties of Conjugates). For all z, z1, z2 ∈ C:

1. z1 + z2 = z̄1 + z̄2

2. z1z2 = z̄1z̄2

3. |z|2 = zz̄

4. Re(z) = z+z̄
2

and Im(z) = z−z̄
2i

1.6 Exponential Form

Using polar coordinates (r, θ) where x = r cos θ and y = r sin θ, we can express complex
numbers in exponential form.
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Figure 1.4: Exponential form of a complex number z = reiθ. The modulus r represents
the distance from the origin, and the angle θ (argument) represents the direction from
the positive real axis.

Definition 1.6.1 (Argument). The argument of z, denoted arg(z), is the set of angles θ
such that z = r(cos θ + i sin θ).

θ = arg(z) = Θ + 2nπ, n ∈ Z

where Θ is the Principal Argument, denoted Arg(z), such that −π < Θ ≤ π.

Theorem 1.6.1 (Euler’s Formula). For any real number θ,

eiθ = cos θ + i sin θ

Thus, any non-zero complex number can be written as:

z = reiθ

1.7 Products and Powers in Exponential Form

Exponential form makes multiplication and division significantly easier geometrically.

Theorem 1.7.1 (Multiplication in Polar Form). If z1 = r1e
iθ1 and z2 = r2e

iθ2, then:

z1z2 = r1r2e
i(θ1+θ2)

z1
z2

=
r1
r2
ei(θ1−θ2)

Remark 1.7.1. Multiplication by z scales the modulus by |z| and rotates the vector by
arg(z).
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1.7.1 De Moivre’s Formula

From the multiplication rule, we derive the formula for integer powers.

Theorem 1.7.2 (De Moivre’s Formula). For any integer n,

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ)

or equivalently, (eiθ)n = einθ.

Example 1.7.1. Calculate (1 + i)10. First, convert 1 + i to exponential form:

r =
√
12 + 12 =

√
2, Arg(z) =

π

4

z =
√
2eiπ/4

z10 = (
√
2)10ei10π/4 = 25ei5π/2 = 32ei(π/2+2π) = 32eiπ/2 = 32i

1.8 Roots of Complex Numbers

Finding the n-th roots of a complex number z0 involves solving zn = z0.

Theorem 1.8.1 (Roots). The n distinct n-th roots of z0 = r0e
iθ0 are given by:

zk = n
√
r0 exp

(
i
θ0 + 2kπ

n

)
, k = 0, 1, . . . , n− 1

Geometrically, the roots lie on a circle of radius n
√
r0 centered at the origin and form

the vertices of a regular n-sided polygon.

1.9 Regions in the Complex Plane

To do calculus, we need topological definitions regarding sets of points in the plane.

Definition 1.9.1 (Epsilon Neighborhood). An ε-neighborhood of a point z0 is the set of
all points z such that:

|z − z0| < ε

Definition 1.9.2 (Topological Concepts). The following definitions apply to sets of com-
plex numbers:

• Interior Point: A point z0 in a set S is an interior point if there exists some
neighborhood of z0 completely contained in S.

• Open Set: A set S is open if every point in S is an interior point.

• Closed Set: A set S is closed if it contains all its boundary points.

• Domain: An open, connected set.

• Region: A domain together with some, none, or all of its boundary points.

Exercise 1.9.1. Determine if the set S = {z ∈ C | |z| < 1} is open or closed.
Solution: It is open, since for each point z0 in S, we can find define ε = 1

3
dist(z0, ∂S);

then the set Uε(z0) = {z ∈ C | |z− z0| < ε} is an ε-neighborhood that lies entirely within
S.
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Figure 1.5: The n-th roots of a complex number z0 are evenly spaced on a circle in the
complex plane, forming the vertices of a regular n-sided polygon.

Figure 1.6: An ε-neighborhood around the point z0. The shaded area represents all points
z such that |z − z0| < ε.
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1.10 Exercises

Exercise 1.10.1. Write the following complex numbers in the form x+ iy:

1. (5− 2i) + (3 + 4i)

2. (2 + 3i)(4− i)

3. 1
1+i

4. 3−2i
−1+i

Exercise 1.10.2. Find Re(z) and Im(z) for the following:

1. z = 1
i

2. z = (1− i)3

3. z = 2+i
3−4i

+ 2−i
5i

Exercise 1.10.3. Let z1 = 1− i and z2 = −2 + 4i. Compute:

1. z21 − 2z1 + 3

2. |2z1 − 3z2|

3. Re(z1z2)

Exercise 1.10.4. Verify that (
√
2− i)− i(1−

√
2i) = −2i.

Exercise 1.10.5. Solve the following equation for z:

z(1 + i) = z̄ + (3 + 2i)

Hint: Let z = x+ iy and equate real and imaginary parts.

Exercise 1.10.6. Verify the following properties using z = x+ iy:

1. iz = −iz̄

2. z̄ + 3i = z − 3i

3. |z|2 = zz̄

Exercise 1.10.7. Prove that for any z1, z2 ∈ C:

|z1 + z2|2 + |z1 − z2|2 = 2(|z1|2 + |z2|2)

This is known as the Parallelogram Law.

Exercise 1.10.8. Show that |z1 − z2|2 = |z1|2 + |z2|2 − 2Re(z1z̄2).

Exercise 1.10.9. (Hard) If |z| = 1, prove that:∣∣∣∣ z − w

1− w̄z

∣∣∣∣ = 1

for any complex number w with |w| ≠ 1.
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Exercise 1.10.10. Write the following numbers in exponential form reiθ (−π < θ ≤ π):

1. 1− i

2. −2
√
3− 2i

3. −i

4. (1− i
√
3)2

Exercise 1.10.11. Find the Principal Argument, Arg(z), for:

1. z = −2
1+i

√
3

2. z = (
√
3− i)6

Exercise 1.10.12. Using exponential form, show that:

(−1 + i)7 = −8(1 + i)

Exercise 1.10.13. Compute the following powers and write the result in the form x+ iy:

1. (1 + i)10

2.
(

1−i
√
3

2

)15

3. (1− i)−8

Exercise 1.10.14. Compute the value of (1 + cos π
3
+ i sin π

3
)6.

Hint: Use De Moivre’s formula.

Exercise 1.10.15. Find all distinct roots of the following equations and locate them in
the complex plane:

1. z3 = 1

2. z2 + 2i = 0

3. z4 = −16

Exercise 1.10.16. Find the four values of (−1)1/4.

Exercise 1.10.17. Solve the quadratic equation z2 + z + 1 = 0 for z.

Exercise 1.10.18. Sketch the set of points determined by the condition:

1. |z − 1 + i| = 1

2. |z + i| ≤ 3

3. Re(z̄ − i) = 2

4. |2z − i| = 4

Exercise 1.10.19. Describe the set of points z such that Im(z2) > 0.

Exercise 1.10.20. Prove that if 1 + z + z2 + · · ·+ zn = 0, then z is a root of unity, i.e.

z = e
2πik
n+1 for some integer k.

Exercise 1.10.21. Establish the Lagrange trigonometric identity:

1 + cos θ + cos 2θ + · · ·+ cosnθ =
1

2
+

sin[(n+ 1/2)θ]

2 sin(θ/2)

where 0 < θ < 2π.
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Chapter 2

Analytic Functions

2.1 Functions of a Complex Variable

A complex function f is a rule that assigns to each complex number z in a set S ⊆ C a
complex number w. We write:

w = f(z)

Here, S is the domain of definition of f . Since z = x + iy, the function f(z) can be
decomposed into its real and imaginary parts:

f(z) = u(x, y) + iv(x, y)

where u and v are real-valued functions of the real variables x and y.

Figure Placeholder: Mapping
Caption: Draw two adjacent complex planes. Label the left one

”z-plane” (xy-axes) and the right one ”w-plane” (uv-axes). Draw a
domain region S in the z-plane and a point z within it. Draw an arrow
labeled ”f” pointing to a region S’ in the w-plane with a corresponding

point w = f(z).

Example 2.1.1. Consider f(z) = z2.

f(x+ iy) = (x+ iy)2 = x2 − y2 + i(2xy)

Thus, u(x, y) = x2 − y2 and v(x, y) = 2xy.

15
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2.1.1 Example: The Joukowski Transformation

Let us examine the mapping defined by the function:

w = f(z) = z +
1

z

This function is historically significant in aerodynamics for mapping circles into airfoil
shapes. To understand the geometry of this mapping, it is most convenient to use polar
coordinates z = reiθ. Substituting into the function:

w = reiθ +
1

reiθ
= r(cos θ + i sin θ) +

1

r
(cos θ − i sin θ)

Separating the real and imaginary parts w = u+ iv, we obtain:

u =

(
r +

1

r

)
cos θ, v =

(
r − 1

r

)
sin θ (2.1)

Mapping of the Unit Circle (r = 1)

Consider the unit circle |z| = 1. Here r = 1, so the equations become:

u = 2 cos θ, v = 0

As θ varies from 0 to 2π, u varies from 2 to −2 and back to 2. Thus, the unit circle in
the z-plane is mapped onto the line segment [−2, 2] on the real axis of the w-plane.

Figure Placeholder: Joukowski Unit Circle
Caption: Left: Draw the z-plane with a unit circle. Right: Draw the
w-plane with a bold line segment on the real axis from -2 to 2. Draw

arrows indicating the mapping.

Mapping of Circles (r = c > 1)

Now consider a circle |z| = c where c > 1. The equations for u and v are:

u = A cos θ, v = B sin θ

where A = c+ 1
c
and B = c− 1

c
. Using the identity cos2 θ + sin2 θ = 1, we can eliminate

θ:
u2

A2
+

v2

B2
= 1
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This is the equation of an ellipse with semi-major axis A and semi-minor axis B. Note
that the foci of this ellipse are located at ±

√
A2 −B2 = ±

√
4 = ±2, which are the

endpoints of the slit created by the unit circle mapping.

Figure Placeholder: Joukowski Ellipse
Caption: Left: Draw the z-plane with concentric circles (e.g., r=1 and
r=2). Right: Draw the w-plane showing the segment [-2,2] and an
ellipse surrounding it. Show how the circle maps to the ellipse.

2.2 Limits and Continuity

The concept of a limit in the complex plane is similar to that in real calculus, but since
the neighborhood is two-dimensional, z can approach z0 from any direction.

Definition 2.2.1 (Limit). Let f be defined in a neighborhood of z0, except possibly at
z0 itself. We say that the limit of f(z) as z approaches z0 is w0, written

lim
z→z0

f(z) = w0

if, for every ε > 0, there exists a δ > 0 such that:

|f(z)− w0| < ε whenever 0 < |z − z0| < δ

Figure Placeholder: Epsilon-Delta Limit
Caption: Draw a point z0 in the z-plane with a small dashed circle of

radius δ around it. Draw a point w0 in the w-plane with a small
dashed circle of radius ε around it. Show that any point z inside the

δ-circle maps to a point f(z) inside the ε-circle.
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Theorem 2.2.1 (Continuity). A function f is continuous at z0 if:

1. f(z0) is defined,

2. limz→z0 f(z) exists, and

3. limz→z0 f(z) = f(z0).

2.3 Derivatives

Differentiation is the cornerstone of complex analysis. The definition is formally identical
to the real case, but the implications are far more profound.

Definition 2.3.1 (Derivative). Let f be defined in a neighborhood of z0. The derivative
of f at z0, denoted f ′(z0), is:

f ′(z0) = lim
∆z→0

f(z0 +∆z)− f(z0)

∆z

provided this limit exists.

If the limit exists, f is said to be differentiable at z0. The approach ∆z → 0 can
occur along the real axis (∆x → 0), the imaginary axis (i∆y → 0), or any other path.
The limit must be independent of the path.

Remark 2.3.1. Standard differentiation rules (sum, product, quotient, chain rule) from
calculus apply to complex derivatives.

2.3.1 Examples of Differentiability

To illustrate the definition, let us look at one function that is differentiable everywhere
and one that is not differentiable anywhere.

Example 2.3.1 (Differentiable Function). Consider the function f(z) = z2. Using the
definition of the derivative:

f ′(z) = lim
∆z→0

(z +∆z)2 − z2

∆z

= lim
∆z→0

z2 + 2z∆z + (∆z)2 − z2

∆z
= lim

∆z→0
(2z +∆z) = 2z

Since the limit 2z exists and is independent of the path taken by ∆z, f(z) = z2 is
differentiable everywhere (it is an entire function).

Example 2.3.2 (Non-Differentiable Function). Consider the function f(z) = z = x− iy.
We attempt to find the limit of the difference quotient:

lim
∆z→0

z +∆z − z

∆z
= lim

∆z→0

∆z

∆z

Let ∆z = ∆x+ i∆y.
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• Path 1 (Along real axis): Set ∆y = 0, so ∆z = ∆x.

lim
∆x→0

∆x

∆x
= 1

• Path 2 (Along imaginary axis): Set ∆x = 0, so ∆z = i∆y.

lim
∆y→0

−i∆y

i∆y
= −1

Since the limits along these two paths are different (1 ̸= −1), the derivative f ′(z) does
not exist anywhere.

2.4 Cauchy-Riemann Equations

Since f(z) = u(x, y) + iv(x, y), there is a necessary relationship between the partial
derivatives of u and v for f ′(z) to exist.

Theorem 2.4.1 (Cauchy-Riemann Equations). Suppose f(z) = u(x, y) + iv(x, y) is dif-
ferentiable at a point z0 = x0+iy0. Then the partial derivatives of u and v exist at (x0, y0)
and satisfy the Cauchy-Riemann equations:

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x

Furthermore, the derivative is given by:

f ′(z0) = ux + ivx

Proof. Assume f(z) = u(x, y) + iv(x, y) is differentiable at a point z. Then the limit

f ′(z) = lim
∆z→0

f(z +∆z)− f(z)

∆z

exists and is unique regardless of how ∆z approaches 0.
Case 1: Approach along the horizontal axis (∆y = 0).

Let ∆z = ∆x. Then:

f ′(z) = lim
∆x→0

u(x+∆x, y)− u(x, y)

∆x
+ i lim

∆x→0

v(x+∆x, y)− v(x, y)

∆x

f ′(z) = ux(x, y) + ivx(x, y) (∗)
Case 2: Approach along the vertical axis (∆x = 0).

Let ∆z = i∆y. Then:

f ′(z) = lim
∆y→0

u(x, y +∆y)− u(x, y)

i∆y
+ i lim

∆y→0

v(x, y +∆y)− v(x, y)

i∆y

Using 1/i = −i, we get:

f ′(z) = −iuy(x, y) + vy(x, y) (∗∗)
Equating the real and imaginary parts of (∗) and (∗∗) gives the Cauchy-Riemann

equations:
ux = vy and vx = −uy

Theorem 2.4.2 (Sufficient Conditions). If the partial derivatives ux, uy, vx, vy exist, are
continuous in a neighborhood of z0, and satisfy the Cauchy-Riemann equations at z0, then
f ′(z0) exists.
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2.4.1 Polar Form

Using z = reiθ, the Cauchy-Riemann equations in polar coordinates are:

rur = vθ, uθ = −rvr

and the derivative is given by:

f ′(z) = e−iθ(ur + ivr)

Proof. Let z = reiθ and f(z) = u(r, θ) + iv(r, θ). Assuming f is differentiable at a non-
zero point z, we can compute the partial derivatives with respect to r and θ using the
chain rule.

Recall that z = reiθ.
1. Differentiate with respect to r:

∂f

∂r
= f ′(z)

∂z

∂r
= f ′(z)eiθ

Also, directly from the components:

∂f

∂r
= ur + ivr

Equating these implies:
f ′(z) = e−iθ(ur + ivr) (†)

2. Differentiate with respect to θ:

∂f

∂θ
= f ′(z)

∂z

∂θ
= f ′(z)(ireiθ) = irf ′(z)eiθ

Also, directly from the components:

∂f

∂θ
= uθ + ivθ

Solving for f ′(z):

f ′(z) =
1

ireiθ
(uθ + ivθ) =

e−iθ

r
(vθ − iuθ) (‡)

Equating (†) and (‡):
ur + ivr =

1

r
vθ − i

1

r
uθ

Matching real and imaginary parts yields the polar form:

ur =
1

r
vθ, vr = −1

r
uθ

2.5 Analytic Functions

Definition 2.5.1 (Analyticity). A function f is analytic at a point z0 if it is differentiable
not only at z0 but also at every point in some neighborhood of z0. A function is analytic
in a domain D if it is analytic at every point in D.

Definition 2.5.2 (Entire Function). A function that is analytic at every point in the
complex plane C is called an entire function. Examples include polynomials and ez.

Theorem 2.5.1. If f ′(z) = 0 everywhere in a domain D, then f(z) is constant in D.
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2.6 Harmonic Functions

Analytic functions are closely related to the Laplace equation from physics and engineer-
ing.

Definition 2.6.1 (Harmonic Function). A real-valued function H(x, y) is harmonic in
a domain if it has continuous partial derivatives of the first and second order and satisfies
Laplace’s equation:

Hxx(x, y) +Hyy(x, y) = 0

Theorem 2.6.1. If f(z) = u(x, y)+iv(x, y) is analytic in a domain D, then its component
functions u and v are harmonic in D.

Definition 2.6.2 (Harmonic Conjugate). If u and v are harmonic in a domain D and
their first-order partial derivatives satisfy the Cauchy-Riemann equations, then v is called
a harmonic conjugate of u.

Figure Placeholder: Level Curves
Caption: Draw the xy-plane. Sketch a set of curves representing

u(x, y) = c1 (solid lines). Sketch a second set of curves representing
v(x, y) = c2 (dashed lines) that intersect the solid lines at 90 degree
angles (orthogonal trajectories), illustrating the property of harmonic

conjugates.

2.7 Exercises

Exercise 2.7.1. Determine the domain of definition for the following functions:

1. f(z) = 1
z2+1

2. f(z) = Arg
(
1
z

)
Exercise 2.7.2. Using the definition of the derivative (limits), show that the function
f(z) = Re(z) is nowhere differentiable.

Exercise 2.7.3. Use the Cauchy-Riemann equations to determine where the following
functions are differentiable and where they are analytic:

1. f(z) = z̄
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2. f(z) = e−x(cos y − i sin y)

3. f(z) = z2 + z

Exercise 2.7.4. Show that the function u(x, y) = 2x(1−y) is harmonic. Find a function
v(x, y) such that f(z) = u+ iv is analytic. Express f(z) in terms of z.

Exercise 2.7.5. Prove that if f(z) is analytic in a domain D and |f(z)| is constant in
D, then f(z) itself must be constant in D.

Exercise 2.7.6. Using the polar form of the Cauchy-Riemann equations, show that the
function f(z) =

√
reiθ/2 (where r > 0 and −π < θ < π) is analytic in its domain.

Compute f ′(z).

Exercise 2.7.7. Consider the function f(z) = |z|2.

1. Write f(z) in terms of x and y (i.e., find u(x, y) and v(x, y)).

2. Apply the Cauchy-Riemann equations to determine the set of points where f ′(z)
exists.

3. Is f(z) analytic at any point? Explain the difference between your answer here and
the result in part 2.
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